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Gauge Enhancement and Chirality Changes in
Nonperturbative Orbifold Models
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Consistent heterotic orbifold vacua, including nonperturbative information, can
be constructed. Generically, the usual modular invariance constraints are violated
and thus, anomalies are expected. However, five-branes do appear in the correct
proportion just to ensure the consistency of the full theory. We first exemplify
the situation in six dimensions, N 5 1, where strong-coupling effects, implying
the presence of five-branes, are better known. Explicit N 5 1 models in D 5 4,
essentially inherited from six dimensions, are then presented. In particular we
show concrete examples of models which exhibit nonperturbative transitions
leading to gauge enhancement and/or to a change in the number of chiral
generations.

1 INTRODUCTION

In this paper, based on work of ref. 1, we deal with nonperturbative

vacua in heterotic orbifold compactifications. In particular we present explicit

realizations of transitions among different vacua, in four dimensions, where

the gauge group gets enhanced and/or a change in the net number of fermionic

generations occurs. Let us stress that such kinds of phenomena are not possible
in perturbation theory. For instance, the number of generations is given by

the index of the Dirac operator on the compactified manifold and is therefore

a topological invariant.

Due to their simplicity, perturbative heterotic orbifolds [2, 3] have proven

to be a very powerful tool in building ª semirealistic-stringy inspired,º effec-

tive low-energy models (Standard Model-like, higher level StrinGuts, etc.).
Not only can the gauge group and matter multiplets be easily obtained (and

somewhat controlled), but the structure of Yukawa couplings and symmetry-
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breaking patterns can be easily studied, etc. The full partition function may

be constructed in these cases.

We will not be able to go that far in the nonperturbat ive case and we
will concentrate on the structure of the massless spectrum.

Our first aim will be to incorporate nonperturbat ive contributions in six-

dimensional orbifold compactifications of the heterotic, both E8 3 E8 and

SO(32), string theories. If nonperturbative phenomena are to be included,

this seems a good road before descending to the more involved and less

known four-dimensional case. In fact, we will show how relevant information
in four dimensions may be obtained from six.

The case D 5 6 is undoubtedly interesting in itself. N 5 1 theories are

chiral, and consistency, that is, anomaly cancellation, constrains the allowed

theories severely. Moreover, even if still incomplete, many nonperturbative

effects are quite well understood in six dimensions. In particular, examples

have been derived from different approaches as type IIB orientifolds F-theory
and M-theory.

In an orbifold compactification ZM symmetry is divided out. Acting on

the (complex) bosonic transverse coordinates, the ZM twist generator u has

eigenvalues e2 p iva. In D 5 6, va are the components of v 5 (0, 0, 1/M,

2 1/M ) and M can take the values M 5 2, 3, 4, 6. The embedding of u on
the gauge degrees of freedom is usually performed by a shift V such that

MV belongs to the E8 3 E8 lattice G 8 3 G 8 or to the Spin(32)/Z2 lattice G 16.

In perturbative string theory, this shift is restricted by the modular

invariance constraint

M(V 2 2 v2) 5 even (1.1)

The spectrum for each model is subdivided into sectors. There are M
sectors twisted by u j, j 5 0, 1, . . . , M 2 1. Each particle state is created

by a product of left and right vertex operators L ^ R. At a generic point in

the four-torus moduli space, the massless states follow from

m2
R 5 NR 1 1±2 (r 1 jv)2 1 Ej 2 1±2

m2
L 5 NL 1 1±2 (P 1 jV )2 1 E j 2 1 (1.2)

Here r is an SO(8) weight with ( 4
i 5 1 ri 5 odd and P is a gauge lattice vector

with ( 16
I 5 1 PI 5 even. Ej is the twisted oscillator contribution to the zero-

point energy and is given by Ej 5 j(M 2 j )/M 2. The multiplicity of states
satisfying Eq. (1.2) in a u j sector is given by the appropriate generalized

GSO projections [4, 5]. The gravity multiplet, a tensor multiplet, charged

hypermultiplets, and two neutral hypermultiplets (four in the case of Z2)

appear in the untwisted sector. Twisted sectors contain only charged hypermul-
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tiplets. The generalized GSO projections are particularly simple in the Z2 and

Z3 cases since all massless states survive with the same multiplicity.

Let us come back to Eq. (1.1). This constraint ensures level matching.
It corresponds to an orbifold version of the global consistency of the theory

ensuring anomaly cancellation. This consistency may be understood as the

vanishing of the total magnetic charge associated with the antisymmetric

tensor field. Namely, * X dH 5 * X (F 2 2 R2) 5 0, where H is the three-form

heterotic field strength with dH 5 tr F 2 2 tr R2 and X is the compact space.

For an orbifold X 5 T 4/ZM and, since curvature is localized at ZM the fixed
points, we can restate this equation as

QTOT 5 o
f

Qf 5 0 (1.3)

where integrals are taken around fixed points f. Equivalently, since the total

Euler number of X is * X R2 5 24 we have

ITOT 5 o
f

If 5 24 (1.4)

where If is the instanton number at the fixed point.

The issue we want to stress here is that modular invariance requirement
as stated in (1.1) and anomaly cancellation are equivalent. They are satisfied

if there are 24 instantons at fixed points or equivalently if the magnetic

charges at fixed points add up to zero. More explicitly, in ref. 1 it is shown

[for the SO(32) case] that If 5 l 1 M E U .

Here E U 5 ( 16
I 5 1

1±2 VI (VI 2 1), E u 5 (M 2 1)2/M, l is an integer, and VI

are the components of the shift V. Also, by computing the curvature at the

fixed orbifold point it is found that

Qf 5 l8 1 M(E U 2 E u ) (1.5)

with l8 5 l 2 M 2 1. Thus, for Qf 5 0, Eq. (1.1) is obtained.

ZM orbifolds corresponding to all possible embeddings allowed by Eq.

(1.1) can be constructed. Indeed, their corresponding massless spectra may
be reproduced by application of index theorems on orbifold (ALE) singulari-

ties [1] with ITOT 5 24 instantons.

The question to address now is: Could we still have a consistent theory

if ITOT , 24 is allowed, i.e., when nB 5 24 2 ITOT instantons become small?

Since the dilaton is known to diverge [6] in such a situation, nonperturbative

information is required to answer this question. In fact, small instantons in
both SO(32) or E8 3 E8 have been studied [7, 8] and may be identified

as five-branes, i.e., extended objects with their world volume filling six-

dimensional spacetime. They correspond to type I D5-branes in the SO(32)

case and to M-theory five-branes for E8 3 E8, Five-branes act as magnetic
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sources for the antisymmetric tensor field and therefore Eq. (1.3) must

now read

QTOT 5 o
f

Qf 1 nB 5 0 (1.6)

We see from our discussion of Eqs. (1.6) and (1.4), that when five-

branes are present the ª modular invarianceº constraint on the shift V must

be abandoned. This is certainly troublesome in perturbation theory, since

only shifts complying with this constraint ensure anomaly cancellation. Other
V ’ s would lead to anomalous spectra. On the other hand, this should not be

surprising when dealing with strong-coupl ing effects, since modular invari-

ance is a perturbative concept (associated with the expansion in terms Riemann

surfaces spanned in string propagation).

Generically (we will be more precise about this), these five-branes
are expected to carry vector, hyper, and tensor massless (six-dimensional)

multiplets on their world volumes and therefore they should contribute to

the total, gauge, and gravitational anomaly of the spectrum.

All these elements suggest a possible positive answer to the above

question. Perturbative contributions associated with ª fatº I instantons and

with nB five-branes, with I 1 nB 5 24, would contribute to the massless
spectrum such that the whole anomaly could cancel. In fact, we will see that

this appears to be the case for the situations where nonperturbat ive information

is at hand.

Let us first discuss the perturbative contribution to the massless spectrum.

This spectrum corresponds to a number ITOT , 24 of large instantons. As

indicated, the instanton number is a function of the shift V in the gauge
lattice. This V has to comply with a new constraint depending on the number

of five-branes since S If (V ) 1 nB 5 24. For instance, assume that we have

the same charge at each fixed point (this is expected for a Z3 orbifold where

all points are equivalent). Equation (1.6) tells us that Qf 5 2 nB /nf where nf

is the number of fixed points. Following the steps that lead us to (1.5), we
now obtain

M(V 2 2 v2) 1 2MEB( f ) 5 even (1.7)

where we have defined, for further convenience, EB( f ) 5 2 MnB /2nf . This
gives us the result we expected. Moreover, recalling that (1.1) results by

imposing level matching, our result suggests that masses of states could be

obtained as in ordinary perturbative orbifolds by just modifying the mass of

the left sector states to be

m2
L 5 NL

1±2 (P 1 jV )2 1 Ej 1 EB( j ) 2 1 (1.8)
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In fact, m2
L 5 m2

R leads to (1.7) with f a fixed point in twisted sector ( j ). We

will propose this expression for computing the massless states in the perturba-

tive sector of general orbifold models containing five-branes. EB is interpreted
as the shift in the vacuum energy due to the flux of the antisymmetric field.

Since in general there will be nonequivalent fixed points we do not expect

in general a simple relationship as above between this energy shift and nB.

The untwisted sector is obtained by projecting onto invariant states as usual.

In order to illustrate how this proposal works, let us consider the case

of smooth Z3 compactifications. This is the simplest case. There is just one
u twisted sector with an energy shift to be considered and nine equivalent

fixed points. Smooth compactification means that oscillator modes needed

to blow up orbifold singularities should be present, thus NL 5 1/3 in (1.8).

For these modes (two at each fixed point) to be massless it is required that

V 2 5 8±9 2 2EB (1.9)

Thus the maximum shift in the vacuum energy will correspond to EB 5
4/9 (obtained for V 5 0). The other extreme case is V 2 5 8/9, in which we

have EB 5 0 corresponding to some modular invariant (perturbative) models.

Let us consider first the SO(32) heterotic string with the class of shifts

V with 3V P G 16 of the form

V 5 1±3 (1, . . . , 1,0, . . . , 0) (1.10)

and m # 8. The unbroken group is U(m) 3 SO(32 2 2m) and the untwisted

sector contains hypermultiplets transforming as (m, 32 2 2m) 1 (m(m 2 1)/

2, 1) 1 2(1, 1). The twisted sectors need an extra vacuum shift EB 5 (8 2
m)/18 and the mass formula provides massless hypermultiplets in each twisted

sector transforming as

1 m(m 2 1)

2
, 1 2 1 2(1, 1) (1.11)

for m 5 0, 2, 4, 6, 8.
There are two other Z3 models with singlet moduli in the twisted sector.

One of them, with shift V 5 (2/3, 0, . . . , 0), has gauge group SO(30) 3
U(1). The other model has shift V 5 1±6 (1, . . . , 1), 3V being a spinorial weight.

The gauge group is U(16). It is thus a SO(32) embedding without vector

structure, a Z3 analogue to the Z2 orientifolds constructed in refs. 9 and 10.

Except for the m 5 8 case, the remaining models, as they stand, have
gauge and gravitational anomalies and the corresponding shifts do not fulfill

the perturbative modular invariance constraints. However, it turns out that

the addition of an appropriate number of five-branes renders them consistent.

Indeed, one can check that adding 3(8 2 m) five-branes to the vacua in Eq.
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(1.10) (12 five-branes in the other two cases) leads to anomaly-free results.

The case of five-branes or small SO(32) instantons was considered in ref. 7.

When nB-branes coincide at the same point (and away from singularities)
a nonperturbative gauge group Sp(nB) is expected to appear, along with

hypermultiplets transforming in the fundamental, antisymmetric, and singlet

representations. We also assign these hypermultiplets to representations of

the perturbative group. Thus, the massless matter content transforming under

the full U(m) 3 SO(32 2 2m) 3 Sp(nB) group is

1

2
(m, 1, 2nB) 1

1

2
(m, 1, 2nB) 1

1

2
(1, 32 2 2m, 2nB)

1 1 1, 1,
2nB(2nB 2 1)

2
2 1 2 1 (1, 1, 1) (1.12)

It is straightforward to check that all non-Abelian gauge and gravitational

anomalies do cancel. Thus, our construction provides a new class of consistent

nonperturbat ive orbifold heterotic vacua.

Notice that the models obtained require the addition of 6s, s 5 4, 3, 2,
1, 0, five-branes. They contribute one unit of magnetic charge each. Thus,

in order to achieve overall vanishing magnetic charge, each of the fixed

points (which in these particular models are identical) must carry magnetic

charge qf 5 nB /9.

The E8 3 E8 case is to some extent similar, but has some peculiarities.

Consider the class of models generated by gauge shifts of the form

V 5 1±3 (1, . . . , 1, 0, . . . , 0) 3 1±3 (1, . . . , 1, 0, . . . , 0) (1.13)

with an even number m1 (m2) of 1±3 entries in the first (second) E8 and with

m 5 m1 1 m2 # 8. Models with appropriate oscillator moduli in the twisted

sector have (m1, m2) 5 (0, 0), (2, 0), (4, 0), (2, 2), (2, 4), and (4, 4). Again,

none of these models [except for (m1, m2) 5 (4, 4)] fulfills the perturbative

modular invariance constraints and they are therefore anomalous. However,
unlike the SO(32) case, they do not present non-Abelian gauge anomalies.

We can check that they miss an equivalent of 3(8 2 m) 3 30 hypermultiplets

in order to cancel gravitational anomalies. But this is precisely the contribution

corresponding to 3(8 2 m) M-theory five-branes, each one carrying a tensor

multiplet and a gauge singlet hypermultiplets. Therefore, these missing modes

match the nonperturbative spectrum corresponding to setting this same num-
ber of instantons to zero size in E8 3 E8. This is a nice check of our procedure.

Simple addition of a shift in the vacuum energy automatically takes into

account the difference between the SO(32) and E8 3 E8 heterotic strings,

yielding no gauge anomalies in the second case. The Z3 models under consid-
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eration are orbifold realizations of the E8 3 E8 vacua in the presence of

wandering branes considered in refs. 8, 11, and 12.

An interesting question is whether there is any shift V in E8 3 E8 [or

Spin(32)/Z2] which admits both spectra with and without five-branes. Such

a situation could indicate possible transitions between perturbative and non-

perturbative models which proceed through the emission of five-branes to

the bulk [11].

Indeed, there is a unique case corresponding to the `standard embedding,’

V 5 1±3 (1, 1, 0, . . . , 0) 3 (0, . . . , 0) [V 5 1±3 (1, 1, 0, . . . , 0) for Spin(32)/

Z2], in which there are both a model without five-branes and a model with

18 five-branes. Both models have identical untwisted perturbative spectrum,

but differ in that the twisted spectrum of the perturbative model has extra

hypermultiplets with respect to the nonperturbat ive one.

In the E8 3 E8 case they transform as (56, 1) 1 7(1, 1), while they

organize as (2, 28) 1 4(1, 1) under SO(28) 3 U(2) for Spin(32)/Z2. The

corresponding nonperturbat ive model contains just three singlets per fixed

point in both cases. In the nonperturbative model the fixed points have

magnetic charge Q f 5 2 2. This suggests that there can be transitions by

which, around a fixed point in the perturbative model, these hypermultiplets

go into two five-branes producing the nonperturbative model. The magnetic

charge is conserved during the process since each fixed point has charge

Qf 5 2 2 and each of the five-branes has charge 1 1.

In the Spin(32)/Z2 case these transitions can be interpreted as an unhiggs-

ing process where the rank is increased by two units, namely (2, 28) 1 4(1, 1)

® Sp(2) 1 matter. If this transition occurs at each of the nine fixed points

and all the branes are at the same (nonsingular point), an Sp(18) maximum

enhanced group is obtained, with the matter content specified in (1.12). A

similar enhancing is expected to occur in D 5 4.

The E8 3 E8 case is different. In the transition (56, 1) 1 4(1, 1) ® 2(1 1
tensor) there is no enhancing at all and a complete charged hypermultiplet

disappears into the bulk. In terms of M-theory branes this corresponds to an

E8 ª fatº instanton, living on one of the ª end of the worldº nine-branes deflates,

becoming pointlike, and going into the bulk as a five-M-brane. The separation

between the nine-and the five-branes is given by the expectation value of

the scalar field of the tensor multiplet on the five-brane [11, 13].

Interestingly enough, if an equivalent transition was possible in D 5 4,

for N 5 1 it would imply a change in the number of generations. A chiral

27 generation (or 27) of E6, contained in the 56 of E7, would disappear from

the spectrum. We will show an explicit realization below.

Transitions can happen at each fixed point independently so that there

should exist similar models with any even number of five-branes between 2
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and 18. Thus, in these standard embedding models there is a discrete degree

of freedom which corresponds to having pairs of zero-size instantons.

Here we have concentrated on a certain class of Z3 models with enough

blowing-up modes to resolve the singular points completely. A more general

situation can be envisaged for cases where these modes are lacking (V 2 .
8/9 above) and for other ZM orbifolds. This is extensively discussed in ref.

1. Let us just recall that generically nonsmooth models have five-branes

trapped at these nonremovable singularities. The dynamics associated with

these stuck branes is different from that of the smooth case. The behavior

of such five-branes for the SO(32) heterotic string is better known. It can be

extracted from type I D-five-branes on ALE spaces and F-theory analysis

[14±18]. For a larger enough number lc of branes sitting at a singularity,

further enhancements to unitary groups are expected. For instance, at a Z3

orbifold point, Sp(l) 3 U(2l 1 m) is obtained [lc 5 (8 2 m/2)]. Tensor

multiplets associated with the missing blowing-up modes do appear, somehow

paralleling the E8 3 E8 case with wandering branes. Moreover, transitions

where some hypermultiplets go into tensors are also suggested. For instance,

when m 5 0 and l 5 0 in the Z3 there is no enhancement at all and it is

found that 28 1 1 ® tensor, where 28 is a hypermultiplet transforming

under a perturbative U(8) [ 3 SO(16)] group. This parallels the above E8 3
E8 example.

The idea explored in the D 5 6 case could be extended to D 5 4,

N 5 1. One would construct heterotic orbifold vacua with perturbative and

nonperturbat ive sectors in which the perturbative (but nonmodular invariant)

sector could be understood in terms of simple standard orbifold techniques.

We should also add a nonperturbative piece, but we face the problem that

nonperturbat ive phenomena in N 5 1, D 5 4 theories are poorly understood

at the moment. However, we can concentrate [1] on certain restricted classes

of D 5 4 orbifolds in which much of the structure is expected to be inherited

from D 5 6. In particular, one can consider ZN 3 ZM orbifolds in D 5 4

with unbroken N 5 1 supersymmetry. Such types of orbifolds have two

general classes of twisted sectors, those that leave a 2-torus fixed and those

that only leave fixed points. The first type of twisted sector is essentially 6-

dimensional in nature; the twist by itself would lead to an N 5 2, D 5 4

theory, which would correspond to N 5 1, D 5 6 upon decompactification

of the fixed torus. For this type of twisted sector we can use our knowledge

of nonperturbat ive D 5 6, N 5 1 dynamics. Twisted sectors of the second

type are purely 4-dimensional in nature and we would need extra information

about 4-dimensional nonperturbative dynamics. To circumvent this lack of

knowledge, one can restrict consideration to a particular class of ZN 3 ZM

orbifolds with gauge embeddings such that these purely 4-dimensional twisted
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sectors are either absent or else are not expected to modify the structure of

the model substantially.

Let us present a specific example [1] based on E8 3 E8. Consider the
Z3 3 Z3 orbifold on E8 3 E8 with gauge shifts

A 5 1±3 (1, 1, 0, . . . , 0) 3 (0, . . . , 0)

B 5 1±3 (0, 1, 1, 0, . . . , 0) 3 (0, . . . , 0) (1.14)

This leads to a perfectly modular invariant orbifold with gauge group E6 3
U(1)2 3 E8. However, we are going to consider the particular version of this

orbifold with discrete torsion first considered in ref. 19. This model has the
special property that all particles in the (A 1 B) twisted sector are projected

out. In this way we get rid of the sector which is purely 4-dimensional. The

model has now three 27’ s in the untwisted sector and nine 27’ s in each of

the sectors A, B, and A 2 B. Hence, altogether the model has 24 net antigener-

ations. We can now consider a nonperturbative orbifold in which the D 5 6

subsectors A, B, and A 2 B have a left-handed vacuum energy shifted by
1/3. This corresponds to a nonperturbat ive D 5 6 vacuum with just singlets

in the twisted sectors and 18 five-branes (leading to tensor multiplets) in

each of the three twisted sectors.

Therefore, a transition from perturbative to the nonperturbative one

implies

3(27) 1 27(27) ® 3(27) (1.15)

The 27 antigenerations of the twisted sectors disappear into the bulk

and we are only left with three E6 generations coming from the untwisted

sector, plus singlets. The U(1)’ s will now be anomalous, but there will be

extra chiral singlets, coming from the tensors, with nonuniversal couplings

to the gauge fields which will lead to a generalized version of the GS

mechanism in D 5 4.
Other examples undergoing chirality changes can be considered. A simi-

lar situation is found in Spin(32)/Z2 when there are branes stuck at a fixed

point [1]. A similar Z3 3 Z3 orbifold projection applied to the U(8) 3 SO(16)

model mentioned above leads, for instance, to an SU(6) 3 SU(2) non-Abelian

gauge group where a transition

(15, 1) 1 (6, 2) ® singlets (1.16)

occurs. Notice that a nontrivial anomaly-free representation disappears from
the spectrum.

Examples exhibiting chirality-changing transitions are particularly

interesting. They correspond to D 5 6 transitions in which one tensor

multiplet transmutes into 29 charged hypermultiplets. Such sorts of transi-
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tions were also studied in ref. 23 from another approach. These examples

show that the number of chiral generations is not invariant under nonper-

turbative effects, something inconceivable in perturbative field theory and

also in perturbative string theory where the net number of generations is

a topological number associated with a given compactified internal manifold.

Vacua with a different number of generations can be connected. Even if

the processes involve strong-coupling dynamics, quite presumably part or

all the connected four-dimensional models can be realized perturbatively

in some region of moduli space, thus effectively reducing the excessively

huge vacuum degeneracy. In the explicit examples we have sketched

above, these transitions may occur at each fixed point independently. If

these are achieved at all nine Z3 fixed points we end up with three

generations and this number, associated with the untwisted sector of the

orbifold, cannot be reduced further. In perturbative string theory some

effort has been dedicated to finding appropriate compactifications leading

to a small three, maybe four (nonvanishing) number of generations,

hoping that nonperturbative physics would privilege these realizations over

infinitely many others. These transitions indicate that, at least in some

cases, a strongly coupled dynamics leading to models with few generations

is available. Of course, other new phenomenological questions should be

taken up now. For instance, since in other compactifications two or zero

net generations are obtainable, which would be the preferred number?

Another new, nonperturbative fact is that the gauge group may be signifi-

cantly enhanced. This enhancement may be amazingly huge, and discourag-

ing for predictivity, as was found in some very singular F-theory

compactifications [24]. The situation is much more bounded in the models

we have discussed above.

Most of the models we have constructed have candidate duals (this

is a further check of our proposal) obtained from F-theory, M-theory, and

type I string formulations [1]. Let us recall that our construction, even

if formally feasible also in D 5 4 dimensions, requires a better knowledge

of nonperturbative effects. Even in D 5 6, these effects are only partially

known. As we stressed, only for a large enough number of branes l $
lc on a fixed point and for a Spin(32)/Z2 lattice is small instanton

information available. This information is not yet available for E8 3 E8.

The nonperturbat ive spectrum is not known in either lattice when the

number of small instantons on the singularity is smaller than the critical

value. The situation for D 5 4, N 5 1 vacua is even more uncertain.

Some insight can be obtained from recent type IIB orientifold constructions

[20, 21]. Moreover, we have seen that relevant nonperturbative information

can be derived, in certain cases, from D 5 6 physics.
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